技术分享:超厚5G天线模块制作工艺研究

超厚5G天线模块加工工艺分析

该产品的关键技术难点涉及5大块,包括:(1)超厚板盲埋孔+背钻+树脂塞孔技术;(2)超厚板层压技术;(3)超厚板二钻精度控制技术;(4)超厚板表面处理工艺;(5)超厚板外形加工技术。

针对这些难题,需要对产品结构优化以满足可制造性。客户设计线路为6层,使用4张高频材料对压,成品板厚为11.44mm,考虑到天线模块的设计指标,各层介质厚度无法降低。

客户原设计金属化通孔+背钻,考虑到11.5mm超厚板压合后在沉铜/电镀/线路/蚀刻/阻焊等工序的困难度,经分析网络连接后,建议客户将原L36+L13背钻取消,更改为L13+L46盲孔互连,结构优化后两次分压厚度为6.7mm+4.3mm,其电镀难度大大降低,且盲孔设计比背钻更利于高频信号传输,如下图1所示。考虑到总压后阻焊及表面处理制作困难,特将流程优化到分压后制作完成,即总压后无需再做阻焊及表面处理。

经上述工艺优化后,11.5mm天线模块加工基本有了可制造性。

图1 优化为两次盲孔分压再总压结构

产品制程设计

超厚板两次盲孔分压

对两次盲孔分压流程设计如下:

①盲孔L1/L3+背钻+树脂塞孔(使用X公司高速板材与高速PP,子部件板厚6.7mm)

流程:内层L10+L23制作→ L1/L3分压 →钻孔→等离子→ 沉铜→一铜

背钻→树脂塞孔→内线酸蚀→内层蚀检

②盲孔L4/L6制作+树脂塞孔(使用X公司高速板材与高速PP,子部件板厚4.3mm)

流程:内层L5/6常规流程制作→L4/L6分压 →钻孔→等离子→沉铜→一铜

→树脂塞孔→内线酸蚀→内层蚀检

考虑到总压后整体板厚达到11. 5 mm左右,在此厚度下制作阻焊及表面处理非常困难,为此特将流程优化到分压后/总压前制作完成,即总压后无需再做阻焊及表面处理。

此外层压的板边还要设计两组铆合定位孔,便于后续压板可进行精确对位,如下图2所示。

图2 板边两组铆合定位孔设计

总压前还要进行沉边处理,沉边后用8mm长度铆钉即可满足铆合要求。

①L1/3板厚6.7mm,从顶层长边沉边深度3.2mm, 余厚3.5 mm。

②L4/6板厚4.3mm,从底层长边沉边深度2.3mm,余厚2.0mm。

完成总压后进行切片分析,可见切片层间偏移在4.0mil以内,符合客户要求,效果如下图3所示。

图3 总压后对位切片图

超厚板二钻精度控制

客户对定位精度有特殊要求,孔中心位置偏差要求按±0.05mm控制。因此需要预钻小孔,使内层盲孔制作时先预钻小孔,以减少总压钻通孔的阻力,降低断刀风险。同时采用板边菲林孔定位测量涨缩,为钻孔文件提供精确的尺寸涨缩信息。最后在钻孔加工过程中,要使用刃长12mm直径1.65mm新钻刀,一步下钻方式,一次钻透NPTH安装孔,防止分步钻孔造成精度偏差,效果如下图4所示。

图4 二钻后隔离环无明显偏移

超厚板外形加工及热冲击效果

由于成品板过厚,需要采用正反控深铣的方式加工,外形设计顶层、底层两组文件,从正、反两面各控深6mm做外形加工。此外定位方式以板内1.65mm-NPTH孔做内定位,防止外形偏移。完成加工后检测外形,设计尺寸为32.5mm*32.5mm*11.4mm,实际检验尺寸偏差≤0.10mm,板边光滑平整,符合品质要求,如下图5、图6所示。

图5 外形后边缘质量 图6 外形尺寸测量

对成品进行耐热性测试,在热冲击条件288℃/10S/3次条件下,未出现分层爆板现象。

图7 热冲击无爆板分层(热冲击条件288℃/10S/3次)

总结

1、超厚板层压技术:常规水平线加工板厚上限在7.0mm左右,本次通过结构优化,将通孔+背钻优化为两次盲孔分压,有效满足了超厚板的层压、电镀及蚀刻要求。

2、超厚板表面处理工艺:通过流程优化,将阻焊及表面处理优先在盲孔子部件时制作完成,大大降低了表面处理的工艺难度。

3、超厚板二钻技术:将分步下钻改为预钻小孔+一次下钻11.5mm通孔、确保孔位精度控制。

4、超厚板成型技术:采用内定位+正、反控深铣,保证外形公差在±0.10mm以内。

石学兵

现任金百泽科技NPI工程师

从事PCB行业工作17年

以上所有信息仅作为学习交流使用,不作为任何学习和商业标准。若您对文中任何信息有异议,欢迎随时提出,谢谢!

关于云创硬见

声明:本站部分文章内容及图片转载于互联网、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站删除。

上一篇 2019年 5月 15日
下一篇 2019年 5月 16日

相关推荐

发表回复

登录后才能评论